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A simple kinetic model for the growth of catalytic metal crystallites on a support is investigated. 
Results for an exactly solvable coalescence model with initial condition consistent with experiment 
shows that the similarity solution does not provide an accurate description of the particle size 
distribution. A numerical solution of the kinetic equation is shown to be in excellent agreement 
with experimental data. The model can be used to provide useful information concerning the 
underlying mechanism responsible for sintering. © 1991 Academic Press. Inc. 

INTRODUCTION 

A complete understanding of crystallite 
growth during the sintering process, oc- 
curring when supported metal crystallites 
are exposed to high temperatures, is lim- 
ited by our ability to obtain accurate solu- 
tions of equations that describe the process 
as well as the prediction of particle (crys- 
tallite) size distributions (PSD) that agree 
with experimental data. Previous studies 
(1-4) based upon measurement and predic- 
tion of surface area as a function of treat- 
ment time, in the form of a power law 
relationship, is unsatisfactory in order to 
differentiate between models of sintering 
by coalescence and/or atomic migration (5, 
6). A recent paper by Wu and Phillips (6) 
reported modelling results based upon a 
model proposed by Ruckenstein and Dady- 
burjor (7), but was unable to predict experi- 
mental PSDs because of the limitation of 
the numerical method used, Campbell et 
al. (5) carried out Monte Carlo simulations 
of sintering and redispersion and also pre- 
sented qualitative results in agreement with 
experimental observations. 
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In the present study a coalescence model 
of sintering is investigated. It is shown that 
a model based on an accurate solution (8) 
of a partial integro-differential equation can 
accurately describe the growth of catalytic 
particles distributed on a support. The 
strength of the present method rests in the 
fact that it can treat a wide class of initial 
distributions including distributions that 
are given only as experimental data. A 
description of a simple test example is 
given together with an application of the 
sintering process involving palladium on 
alumina. 

COALESCENCE MODEL 
FOR CRYSTALLITE GROWTH 

It is assumed that particles of metal mi- 
grate across the surface, due to thermal mo- 
tion, and grow by collision and coalescence. 
In order to construct a mathematical model 
of this process it is necessary to make a 
number of assumptions concerning the sys- 
tem: (i) There is a homogeneous distribution 
of particles and a sufficiently low surface 
density that only collision between pairs 
leads to coalescence, (ii) the nature of the 
surface is such that all particles are free to 
migrate, (iii) atomic sizes are small com- 
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pared with metal particle sizes. Assumption 
(iii) is made so that the computational diffi- 
culties associated with the inclusion in the 
model of particles comprising a large num- 
ber of atoms can be overcome. 

Under these assumptions the evolution of 
the PSD is governed by the partial integro- 
differential equation 

O N(v,  t) = ( v/2 
a o 

N(V,  t )N(v  - V, t )K(V,  v - V) dV  
g ,  c c  

- N(v, t) Jo N(V, t)K(V, v) dV. (1) 

Here N(v,  t) dv is the average number of 
crystallites with volume between v and v + 
dv on unit surface area of support at time t. 
The kernel K(V,  v) describes the geometry 
and dynamics of the collection mechanism 
for two particles of volume V and v and is a 
symmetric function of its two arguments. 

Equation (1) is a balance equation where 
the first term on the right-hand side repre- 
sents the increase in the number of particles 
of volume v by coalescence of two smaller 
particles, and the second term represents 
the loss of particles of volume v by coales- 
cence with a particle of any other volume. 
This basic equation can be modified to in- 
clude other mechanisms such as condensa- 
tion and evaporation of particles (9). It is 
known that the deterministic equation (1) 
approximately describes a stochastic pro- 
cess (10). 

The total average number, Mo(t), and vol- 
ume, M1, of particles on unit area of support 
is given by the moments 

t "  
~ c  

Mo(t) = | N(v,  t) dr, (2) 
Jo 

and 
t ~ z c  

M1 = Jo vN(v,  t) dv. (3) 

The fact that Mt is a constant is seen by 
integrating Eq. (1). Thus Eq. (1) guarantees 
that the total volume of metal on the surface 
is conserved. The initial number of particles 
is denoted by N o = M0(0). 

For simplicity the particles are assumed 
to be hemispherical. For  hemispherical par- 
ticles a simple relationship exists between 
the volume v and the radius r of each particle 
so that v can be replaced by r as an indepen- 
dent variable. The kernel K(r, R)  is taken 
to be the form given by Ruckenstein and 
Pulvermacher (3). Here it is assumed that 
the diffusion coefficient D(r, R)  has a simple 
dependence on the two particle radii r and 
R so that 

K(r, R)  = ck(r k + Rk). (4) 

The value of exponent k corresponds to two 
limiting cases: For k -< 0 the interaction be- 
tween the metal particles and the support is 
strong so that diffusion is the rate-determin- 
ing process (this is referred to as the diffu- 
sion-controlled case). On the other hand for 
k > 0 the interaction is weak and the diffu- 
sion time is short compared with coales- 
cence (this is referred to as the sintering- 
controlled case). For the diffusion-con- 
trolled case the kernel depends on a small 
scale time 0 associated with the diffusion of 
particles across the surface. This depen- 
dence on time is weak provided that (3) 

ln(4T) >> 1, (5) 

where the dimensionless time T = 47rDO/p 
and p -- r + R is the collision distance. 

The total exposed surface area of metal 
on unit area of support is given by 

z c  

S(t)  = o- fo t ) 2 / 3 N ( ° '  t) dr, (6) 

where for hemispherical particles the shape 
constant is o- = (187r) ~I3. Given the kernel in 
Eq. (4) Ruckenstein and Pulvermacher (3) 
have shown that the exposed surface area 
of metal approximately satisfies a simple 
equation of the form 

dS 
d---[ = - ctkS4- k. (7) 

Thus measurement of the exposed surface 
area of metal as a function of time could 
yield information on the mechanism respon- 



590 EVERSON, EYRE, AND WRIGHT 

sible for sintering. This behaviour is not 
very satisfactory as mentioned above. 

NUMERICAL METHOD OF SOLUTION 

Equation (1) can be written in a dimen- 
sionless form. Because particle volumes 
may vary over many orders of magnitude it 
is necessary to develop an approach that 
can treat particles of widely differing sizes. 
For  this purpose the volume v is trans- 
formed to a dimensionless variable q on the 
finite interval [ -  1, 1], 

v = g \ i  ---2--~/" (8) 

Here g is a volume parameter which can 
be chosen so that the solution of Eq. (1) 
is distributed in a reasonable way over the 
interval [ - 1, 1]. The value of~ remains fixed 
throughout the calculation. On introducing 
a diffusion parameter X that defines a natural 
scale for the kernel, the dimensionless ker- 
nel becomes 

fl(Q, q) = 1K(V,  v). (9) 
X 

(In particular for a kernel of the form (4) one 
can take X = ck.). Introducing a dimen- 
sionless time 

r = xNot, (10) 

and dimensionless dependent variable 

v(q, t) = -~oN(v, t), (11) 

Eq. (1) becomes 

0 fq(v/2) 
Or v(q, 7") ~-~ 

v(O, 7.)v(u, 7.)~(Q, u)~(Q) dQ - v(q, 7.) 
1 

f v(Q, r)fl(Q, q)co(Q)dQ, (12) 
-1 

where 

u =- u(q, Q) 

= 2(q - Q) - (1 - q)(1 - Q) (13) 
2(q - Q) + (1 - q)(1 - Q) '  

is the transformed volume difference, v - 
V, and 

2 
oJ(q) = (1 - q)2. (14) 

The approach taken in the present paper is 
to solve Eq. (12) using a technique based on 
a collocation method and a finite element 
basis (8). A brief description of the numeri- 
cal method is now given. 

Introducing a cut off parameter qc the in- 
terval [ - 1, qc] is partitioned using n interior 
nodes; two nodes are fixed at - 1  and q~, 
respectively. On this partition one defines 
(n + 2) cubic B-splines (11), B i, and writes 

n + l  

v(q, r) -~ ~ fi(r)Bi(q), (15) 
i=0 

Coefficients f ( z )  are sought that approxi- 
mate the solution of Eq. (12). These coeffi- 
cients satisfy the equation 

n + l  n + l  n + l  

± Z = Z E 
0 r  i=0 i=0 j = 0  

fi(r)fj(z)cij(q), (16) 

where coefficients cij(q) are given by mo- 
ment integrals 

f 
q[v/2) 

cii(q ) = Bi(u)Bj(Q)fl( Q, u)o~(Q) dQ 

- Bi(q) Bj(Q)fl(Q, u)o~(Q)dQ. (17) 

Equation (16) is reduced to a system of 
ordinary differential equations by collocat- 
ing at (n + 2) points. These points are cho- 
sen to coincide with the nodes of the cubic 
spline, plus two additional points which are 
placed midway between the nodes defining 
each end interval. A fully implicit one-step 
method is used to solve the system of ordi- 
nary differential equations. 

AN EXACTLY SOLVABLE MODEL 

Some insight into the model can be gained 
from an exact analytic solution of Eq. (1). 
Unfortunately such solutions can be found 
only for special choices of  the kernel and 
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FIG. 1. Normalised PSD for the test problem. Curves are labeled by the time in hours. The difference 
between exact and computed solutions is too small to show up in the figure. 

initial condition (12). Such an initial condi- 
tion that is consistent with experiment has 
the form 

N(v, 0 ) =  4N°-----~v exp (-2~0v ) ,  (18) 
O0 

where N o and v 0 are free parameters denot- 
ing the initial number and initial average vol- 
ume of particles, respectively. 

For a constant kernel K(o, V) = y Eq. (1) 
has the solution (12) (the notation M 0 -- 
Mo(t) is used in what follows) 

N(v ,  t) = 2 M2 I e-2V/Vo 
M1%/1 - Mo/N o 

s i n h ( % / 1 -  Mo/No2~o), (19) 

with moments 

2 
M° - 2 + y N o t '  (20) 

and 

Ml = Novo.  (21) 

Substituting Eq. (19) into Eq. (6) gives 

1 F(-~) *.2/3, At1/3 
S(t)  - 3 2 2/3 0"11"11 11/10 

(1 + R) 5/3 - (1 - R) 5/3] 
R , (22) 

R = %/1 - Mo/N o, and for S O =- S(0), 

1 F(2/3) o.N0v2/3" (23) 
So - 3 22/3 

A number of important results concerning 
the solution of Eq. (1) have been obtained 
by means of a similarity solution. The idea 
behind this approach is to assume something 
about the solution function N(v ,  t) and in 
this way obtain an equation for the assumed 
form that is easier to solve than Eq. (1). The 
transformation is 

A2 M1 N 
0(r/)  - -~-~02 (v, t) ,  (24) 

BM0 
r/ = A M I  v, (25) 

where it follows from the definition of the 
moments (Eqs. (2) and (3)) that 

A = fo  t0(r/) dr/, (26) 

and 
oc 

B = f0 ~O(~) dr/. (27) 
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In the case of a constant kernel, the trans- 
formation (24) and (25) leads to an ordinary 
differential equation of the form 

d 

f: + to(D)to(n - D)dD = 0. (28) 

For the boundary condition to(0) = 1, Eq. 
(28) has the solution 

to(r/) = e -n (29) 

It remains to be shown that the similarity 
solution (29) satisfies Eq. (1). For  initial dis- 
tribution (18) and constant kernel, the exact 
solution (19) of Eq. (1) leads to the function 

t0(r/) = 2 1 + e -(2+')n 

I-( 7 ] s i n h [ \ ~ }  (2+~')r /  , (30) 

where the dimensionless time r -- yNot. For 
large ~- and 

1 
r/>> 2(1 + r-------7' (31) 

the similarity solution (29) is obtained. 
Note, however, that if r/is sufficiently small 
and the inequality of Eq. (31) is not satisfied 
then Eq. (29) is not a solution of Eq. (1). 
Indeed Eq. (30) satisfies the boundary con- 
dition to(0) = 0. 

T A B L E  1 

Exact  (E) and Calculated (C) Momen t s  for 
the Test  Problem 

t (h) M 0 = 1018 M 1 × 10 22 S (m 2) 
(A s ) 

E C E C 

E C 

0 3.70 - -  8.77 - -  111.1 111.t 
1 1.75 1.79 8.77 8.77 84.7 85.1 
2 1.15 1.17 8.77 8.77 73.0 73.3 
3 0.85 0.87 8.77 8.75 65.9 66.0 
4 0.68 0.69 8.77 8.67 60.9 60.7 

qJ (r t) 

1.0 . . . . . . .  

i I 

0.~ 

16 

O.E 

0.4 

/ / /  ',, 
\k\ \ \ \  

t 1 I 
-2 -r 0 

I°0to q 

FIG. 2. Dimensionless  variable ~(~). Broken curve 
is the funct ion e-~.  Solid curves  are obtained for the 
test  problem and are labelled by the  time in hours .  

R E S U L T S  A N D  D I S C U S S I O N  

The initial distribution chosen for the 
present calculations is that used by Chen 
and Ruckenstein (13) in their study of sin- 
tering of palladium on an alumina model cat- 
alyst. It should be remarked that the experi- 
mental PSD is given in the form of a 
histogram where the percentage of particles 
having diameters in a particle size of width 
5 A is presented. In order to compute results 
using Eq. (1) it is necessary to first fit this 
data to a smooth curve using cubic spline 
approximation with knots positioned at the 
center of each interval. It is assumed that 
1 g of metal is distributed over the support 
surface.The surface area of support is de- 
noted by L 2. In the diffusion-controlled case 
L 2 is restricted by the condition in Eq. (5), 
otherwise it is a " f r ee"  parameter. A spline 
fit to the initial distribution at 650°C yields 
moments N o = 3.70 × 1018andM 1 = 8.77 
× 1022 ~ 3  of metal o n  L 2 surface area of 
support. 
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TABLE 2 

Calculated Ratios S/So for Different Kernels K(r, R) = ck(r k + R k) 

593 

t c 2 = 3 × 10 22 c I = 9 × 10 -2~ c o = 6 × 10 -19 c 1 = 10-17 c_ 2 = 3 × 10 -16 E x p  

(13) 

0.5 0.903 0,889 0.859 0.822 0.797 0.90 

1 0.823 0.808 0.772 0,737 0.718 0.67 

4 0.539 0,565 0,554 0,551 0.561 0.56 

8 0.365 0.483 0,455 0.469 0.492 0.55 

20 0.170 0.286 0.321 0.372 0.410 0,51 

Note. The  bes t  fit to the  PSD is o b t a i n e d  wi th  k = - 1. 

The test problem is considered first. This 
problem serves as a benchmark calculation. 
The special form of the initial condition (18) 
means that this function is completely speci- 
fied by just  two parameters  No and M1. The 
remaining parameter  y is chosen to approxi- 
mately describe the experimental  data (13)  

and is taken to be y = 6 × I0-19 L 2 h - l .  
Figure 1 shows the change in the PSD as 

a function of the particle diameter where 
each curve is normalized so that the area 
under the curve is unity. The difference be- 
tween the exact  and computed solutions is 
too small to show up in the figure. Table 1 
shows the comparison between exact  (E) 
and computed (C) moments  as well as the 

exposed surface area of metal assuming 
hemispherical particles. 

Figure 2 shows the dimensionless variable 
tO('0). The broken curve is the function ~b(~) 
= e - '  which is an exact solution for all 
times of the Eq. (1) when the initial condi- 
tion is a simple exponential.  The solid 
curves illustrate the time dependence  of  
tk(~) when the initial condition is given by 
Eq. (18). Here  each curve is labeled by the 
time in hours. As time increases the 
agreement with the broken curve moves to 
smaller values of "0 in agreement with the 
inequality of Eq. (31). The fact that these 
curves alter their shape over  a typical time 
scale for sintering is evidence that the simi- 
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F l o .  3. N o r m a l i s e d  PSD for  an  in i t ia l  cond i t i on  f i t ted to e x p e r i m e n t  (13). B r o k e n  c u r v e  is the  n o r m a l i s e d  

in i t ia l  func t ion .  Sol id  c u r v e s  are  the  PSD af te r  1 h us ing  the  ke rne l  in Eq.  (4). E a c h  c u r v e  is l abe l ed  
by  the  e x p o n e n t  k. The  c o n s t a n t  ck is g iven  in Tab le  2. 
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FIG. 4. Same as in Fig. 3 but with solid curves showing the PSD after 4 h. 
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FIG. 5. Comparison of the curve labeled by k = - 1 with the normalised experimental PSD after 1 h. 
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FIG. 6. Same as in Fig. 5 but after 4 h. 
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FIG. 7. Compar i son  of  curves  obtained using c 1 = |0  17 (dotted) and c 1 = 3 × 10-18 (solid) with the 
normal ised exper imental  PSD after 20 h. 

larity solution cannot be trusted to give reli- 
able information on the PSD. This would 
appear to be especially true for particles at 
the small particle end of the spectrum. 

In order  to investigate the PSD in detail, 
use is made of the experimental  data on the 
initial distribution. For  this initial function 
there is no analytic solution of Eq. (1) so 
one must rely on the accuracy of the 
numerical procedures.  Table 2 shows the 
ratio of  exposed surface areas, S(t)/So, 
computed using the kernel form in Eq. (4) 
with the exponent  k ranging from 2 to - 2  
and ck chosen so that the decrease in 
the exposed surface area after 4 h agrees 
approximately with experiment  (13). It 
should be remarked that this quantity is 
independent of the shape parameter  or. As 
can be seen from the table, one can deduce 
very little about the mechanism responsible 
for sintering. The situation is different for 
the PSD. Figures 3 and 4 show the PSD 
after 1 and 4 h, respectively. Each curve 
is labelled by the exponent  k used in the 
kernel. These curves are greatly different 
from one another  even though they yield 
approximately the same exposed surface 
area of metal. Indeed it is found that the 
curve corresponding to k = - 1 ,  which 
corresponds to a diffusion-controlled case, 
gives the best agreement with the experi- 
mental data. A comparison of  these results 

with the normalised data is shown in Figs. 
5 and 6. 

Figure 7 shows the PSD after 20 h. Both 
curves correspond to k = - 1  but have 
been computed using different values for 
the constant c_~. The choice c_~ = 1 0  - 1 7  

produces a curve in disagreement with the 
normalized data. The ratio S/So = 0.372 
also disagrees with the experimental  ratio 
S/So = 0.51. By choosing the constant c_~ 
= 3 x 10 18 a more reasonable value of  
the ratio S/S o = 0.501 is obtained. The 
resulting PSD is also in good agreement  
with the normalised data. The above result 
suggests that it would be bet ter  to assume 
c_ ~ --- c_ ~(t). Since this coefficient changes 
over  a period of 20 h it is a slowly varying 
function of  time. 

C O N C L U S I O N S  

Results for the PSD of a simple coales- 
cence model have shown good agreement 
when compared with experimental  data. 
The PSD provides a much clearer picture of 
the underlying mechanism responsible for  
sintering than could the change in surface 
area of exposed metal. For  an initial distri- 
bution typical of most experiments it has 
been shown that the similarity solution may 
not provide an adequate description of  the 
PSD, particularly for small particles, over  a 
typical time period for sintering. This seri- 
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ously limits the ability of the similarity solu- 
tion to provide detailed information regard- 
ing small particle growth. It does, however, 
provide useful information on gross features 
involving large particles, such as the ex- 
posed surface area. 

In one specific application of the model to 
sintering of palladium on alumina it has been 
shown that the diffusion-controlled model 
describes the experimental PSD better than 
the sintering-controlled model. No such 
conclusions could be drawn simply from the 
data on the exposed surface area. The ex- 
perimental PSD is described most accu- 
rately by an exponent k = - 1 .  It should 
be noted, however, that other mechanisms 
such as Ostwald ripening (14) may also con- 
tribute to the sintering process. 
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